Zero Divisor Graphs of Idealizations for Direct Products of Commutative Rings

Mehrdad Azadi ${ }^{*}$, Azemat Ramzanpoor Mardekheh
Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Keywords

Idealization,
Prime,
Module,
Zero divisor,
Graph,
Direct Product.

Abstract

Let $\mathrm{R} _1$ and $\mathrm{R} _2$ be commutative ring, M be a prime module over $\mathrm{R} _1$ and $\mathrm{R} _2$. Let $\mathrm{Z}(\mathrm{R})$ be the set of zero divisors of a commutative ring R. The zero divisor graph of a commutative ring R, is the simple graph with vertices $Z(R)-\{0\}$, denoted $\Gamma(R)$. Two distinct vertices x and y of $Z(R)-\{0\}$ are adjacent if and only if $x y=0$. In this paper we study the diameter of $\boldsymbol{\Gamma}\left(\left(\mathrm{R} _1 \times \mathrm{R} _2\right)(+) \mathrm{M}\right)$ with respect to the diameters of the zero divisor graphs of $\mathrm{R} _1(+) \mathrm{M}$ and $R _2(+) \mathrm{M}$.

1. Introduction

For the sake of completeness, we explain some definitions and points used throughout of the paper. All rings in this paper are commutative. Let $Z(\mathrm{R})$ be the set of zero divisors of R . The idea of associate graph to a commutative ring, where all elements of the ring are vertices of that graph, first appeared in [5] which deals with graph coloring . In [2], Anderson and Livingston take the nonzero zero divisors for the vertices of the graph and two vertices $x, y \in Z(R)-\{0\}$ are adjacent if and only if $x y=0$. The resulting graph $\Gamma(R)$ is the zero divisor graph of the commutative ring R. Also the authors proved that if R is a commutative ring, then $\Gamma(\mathrm{R})$ is connected and has diameter less than or equal to three [2, Theorem 2.3.]. In [4], M. Axtell and J. Stickles study the diameter and girth of the zero divisor graph of idealization of a commutative ring. In [10], J. Warfel describes the diameter of a zero divisor graph for a direct product $R _1 \times R _2$ with respect to the diameters of the zero divisor graphs of $R _1$ and $R _2$. In this paper we study the diameter of ($\left.\left(\mathrm{R} _1 \times \mathrm{R} _2\right)(+) \mathrm{M}\right)$ with respect to the diameters of the zero divisor graphs of R_1(+) M and R_2(+) M. Let $\boldsymbol{\Gamma}$ be a graph. For two arbitrary vertices x and y of graph Γ a path of length t between x and y is an ordered list of distinct vertices $x=x _0, x_{-} 1, \ldots, x_{-} t=y$ such that $x_{-}(i-1) x_{-} i$ are edges for all $i=$ $1, \ldots, \mathrm{t}$. We denote a path between x and y by $\mathrm{x}=\mathrm{x} _0-\mathrm{x} _1-$ $\ldots-x_{-} t=y$. For two vertices x and y of Γ, the length of a shortest path from x to y is denoted by $\mathrm{d}(\mathrm{x}, \mathrm{y})$. Note that if there is no path of finite length between x and y , then $\mathrm{d}(\mathrm{x}, \mathrm{y})=\infty$. The diameter of Γ is defined as $\operatorname{diam}(\boldsymbol{\Gamma})=\sup \{\mathrm{d}(\mathrm{x}, \mathrm{y})$: x and y are vertices of $\boldsymbol{\Gamma}\}$. The graph $\boldsymbol{\Gamma}$ is complete if it is connected with diameter one. We use the notation A^{\wedge} *to refer to the non-zero elements of A . Let M be a module over commutative ring R. Let $Z_{-} R(M)$ be the set of zero divisors of M over R, defined as $Z _R(M)=\{a \in R$:
$a m=0$ for some $\left.m \in M^{\wedge *}\right\}$. Define ($\left.0: _\mathrm{R} M\right)=\{r \in R: r m=0$, for all $\mathrm{m} \in \mathrm{M}\}$. R -module M is called prime if whenever $\mathrm{rm}=0$ either $m=0$ or $r \in\left(0: _R M\right)$ [6]. The idealization of M in R, denoted by $\mathrm{R}(+) \mathrm{M}$, is a ring with the following operation:

$$
\begin{aligned}
& (a, m)+(b, n)=(a+b, m+n) \\
& (a, m)(b, n)=(a b, a n+b m) .
\end{aligned}
$$

We will assume that neither the ring nor the module is trivial [8].

2. Diameter of ((R_1×R_2) (+) M)

In this section we investigate the relation between diameter of ($($ R_1×R_2) (+) M) with the diameters of the zero divisor graphs of $R _1(+) M$ and $R _2(+) M$. In this section we let (R_1), (R_2) $\neq \phi$

Lemma 2.1.
Let R be a commutative ring, M be a prime module over R. Then $(\mathrm{a}, \mathrm{m}) \in Z(R(+) M)^{*}$ if and only if $\mathrm{a} \in\left(0:_{R} M\right) \cup$ $Z(R)$.
Proof. Suppose that $(\mathrm{a}, \mathrm{m})) \in Z(R(+) M)^{*}$. If $\mathrm{a}=0$, the proof is complete. Thus we assume that $\mathrm{a} \neq 0$. There exists (b, n) of $Z(R(+) M)^{*}$ such that $(\mathrm{a}, \mathrm{m})(\mathrm{b}, \mathrm{n})=(0,0)$; hence $\mathrm{ab}=0$ and $\mathrm{an}+\mathrm{bm}=0$. If $\mathrm{b}=0$ then $\mathrm{n} \neq 0$ and $\mathrm{an}=0$ and hence $\mathrm{a} \in\left(0:_{R} M\right)$, since M is a prime module. If $\mathrm{b} \neq 0$, then $\mathrm{a} \in Z(R)$.

Conversely, assume that $(\mathrm{a}, \mathrm{m}) \in R(+) M$ with $\mathrm{a} \in\left(0:_{R} M\right) \cup Z(R)$. Let $\mathrm{a} \in Z(R)$, then $\mathrm{ab}=0$, for some $\mathrm{b} \neq 0$. If $\mathrm{b} \in\left(0:_{R} M\right)$,then $(\mathrm{a}, \mathrm{m})(\mathrm{b}, \mathrm{n})=(0,0)$. If $\mathrm{b} \notin\left(0:_{R} M\right)$, then there exists a non zero element x of M such that $b x \neq 0$, therefore $(\mathrm{a}, \mathrm{m})(0, \mathrm{bx})=(0,0)$. Let $\mathrm{a} \in\left(0:_{R} M\right)$, then for all n of

[^0]M we have an=0. Thus (a,m) $(0, \mathrm{n})=(0,0)$. So in any cases we have $(\mathrm{a}, \mathrm{m}) \in Z(R(+) M)^{*}$.

Lemma 2.2.

Let R be a commutative ring, M be a prime module over R. If $\Gamma(R) \neq \boldsymbol{\phi}$, then $\boldsymbol{\Gamma}(R(+) M)$ is complete graph if and only if $Z(R)^{2}=\{0\}$ and $Z(R)=\left(0:_{R} M\right)$.

Proof. Let $R(+) M$ is complete graph and $\mathrm{r}, \mathrm{s} \in Z(R)^{*}$. Hence $(\mathrm{r}, 0)(\mathrm{s}, 0)=(0,0)$. So rs=0 and $Z(R)^{2}=\{0\}$.

If there exists $\mathrm{m} \in M^{*}$ and $\mathrm{a} \in Z(R)^{*}$ such that $\mathrm{am} \neq 0$, then $(\mathrm{a}, 0)(0, \mathrm{~m}) \neq(0,0)$, which is a contradiction, since $\Gamma(R(+) M)$ is complete graph. Let $\mathrm{x} \in\left(0:_{R} M\right)$, then $(\mathrm{x}, 0) \in Z(R(+) M) .{ }^{*}$ Since $\Gamma(R) \neq \boldsymbol{\phi}$, so there exists $\mathrm{a} \in Z(R)^{*}$. Hence $(\mathrm{x}, 0)$ $(\mathrm{a}, 0)=(0,0)$, since $\Gamma(R(+) M)$ is complete graph. Thus xa $=0$ implies that $\mathrm{x} \in Z(R)$. Thus $Z(R)=\left(0:_{R} M\right)$.

Conversely, let $(\mathrm{x}, \mathrm{m}),(\mathrm{y}, \mathrm{n}) \in Z(R(+) M)^{*}$. Thus $\mathrm{x}, \mathrm{y} \in$ $\left(0:_{R} M\right) \cup Z(R)$, by Lemma 2.1. Hence $\mathrm{xy}=0$ and $\mathrm{x} \mathrm{n}+\mathrm{ym}=0$, since $Z(R)^{2}=\{0\}$ and $Z(R)=\left(0:_{R} M\right)$. Therefore $(R(+) M)$ is complete graph.

We need the following Lemma from [3, Theorem 3.9].
Lemma 2.3.
Let R be a commutative ring, M be a module over R . Then $\operatorname{diam}(\Gamma(R(+) M)) \leq 2$ if and only if for all $\mathrm{x}, \mathrm{y} \in Z(R) \cup$ $Z_{R}(\mathrm{M})$, either (1), there is a $0 \neq z \in\left(0:_{R} M\right)$ such that $\mathrm{xz}=\mathrm{yz}=0$, or (2), there is a $0 \neq \mathrm{m} \in M$ such that $\mathrm{xm}=\mathrm{ym}=0$.

Theorem 2.4.

Let R_{1} and R_{2} be commutative rings, M be a prime module over $\quad R_{1}$ and R_{2}. Let $\operatorname{diam}\left(\Gamma\left(R_{1}(+) M\right)\right)=$ $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{2}(+) M\right)\right)=1$. Then diam $\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=1$.

Proof. Suppose that $\left(\left(x_{1}, y_{1}\right), m_{1}\right)$ and $\left(\left(x_{2}, y_{2}\right), m_{2}\right)$ are belong to $Z\left(\left(R_{1} \times R_{2}\right)(+) M\right)^{*}$. Then by Lemma 2.1, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are belong to $\mathrm{Z}\left(R_{1} \times R_{2}\right) \cup$ \left. (0: ${R_{1} \times R_{2}}^{M}\right)$. Since, $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{1}(+) M\right)\right)=1$, thus by Lemma 2.2, $Z\left(R_{1}\right)^{2}=\{0\} \quad$ and $Z\left(R_{1}\right)=\left(0:_{R_{1}} M\right)$. Since, $\operatorname{diam}\left(\Gamma\left(R_{2}(+) M\right)\right)=1$, thus by Lemma 2.2, $Z\left(R_{2}\right)^{2}=\{0\}$ and $\mathrm{Z}\left(R_{2}\right)=\left(0:_{\mathrm{R}_{2}} \mathrm{M}\right)$. So $Z\left(R_{1} \times R_{2}\right)^{2}=\{0\}$ and $\mathrm{Z}\left(R_{1} \times\right.$ $\left.R_{2}\right)=\left(0:_{R_{1} \times R_{2}} \mathrm{M}\right)$. Hence, $\left(\left(x_{1}, y_{1}\right), m_{1}\right)\left(\left(x_{2}, y_{2}\right), m_{2}\right)=$ $((0,0), 0)$. Thus, diam $\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=1$.

Lemma 2.5.

Let R_{1} and R_{2} be commutative rings, M be a prime module over R_{1} and R_{2}. If $\operatorname{diam}\left(\Gamma\left(R_{i}(+) M\right)\right)>1$, for $\mathrm{i}=1,2$. Then diam $\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)>1$.

Proof. Without loss of generality let $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{1}(+) M\right)\right)>1$. So by Lemma 2.2, $Z\left(R_{1}\right)^{2} \neq 0$ or $Z\left(R_{1}\right) \neq\left(0:_{\mathrm{R}_{1}} \mathrm{M}\right)$. If $Z\left(R_{1}\right)^{2} \neq 0$, so there exist x_{1}, x_{2} of $Z\left(R_{1}\right)^{*}$ such that $x_{1} x_{2} \neq 0$. Let $\mathrm{y} \in Z\left(R_{2}\right)^{*}$, so we have $\left(\left(x_{1}, y\right), 0\right)$, $\left(\left(x_{2}, y\right), 0\right) \in Z\left(\left(R_{1} \times R_{2}\right)(+) M\right)^{*} \quad$ and $\quad\left(\left(x_{1}, y\right), 0\right)$ $\left(\left(x_{2}, y\right), 0\right)=\left(\left(x_{1} x_{2}, y^{2}\right), 0\right) \neq((0,0), 0)$, so $\operatorname{diam}\left(\Gamma\left(\left(R_{1} \times R_{2}\right)\right.\right.$ $(+) \mathrm{M}))>1$. Now let $\mathrm{Z}\left(R_{1}\right) \neq\left(0:_{\mathrm{R}_{1}} \mathrm{M}\right)$, so there exist $x_{1} \in$ $Z\left(R_{1}\right)^{*}$ and $\mathrm{m} \in M^{*}$ such that $x_{1} m \neq 0$, thus ($\left.\left(x_{1}, 0\right), 0\right)$, $((0,0), \mathrm{m}) \in Z\left(\left(R_{1} \times R_{2}\right)(+) M\right)^{*}$ and $\left(\left(x_{1}, 0\right), 0\right)((0,0), \mathrm{m})$ $) \neq((0,0), 0)$; hence $\operatorname{diam}\left(\Gamma\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)>1$.

Theorem 2.6.

Let R_{1} and R_{2} be commutative rings, M be a prime module over R_{1} and R_{2}. Let $\operatorname{diam}\left(\Gamma\left(R_{1}(+) M\right)\right)=1$ and $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{2}(+) M\right)\right) \geq 2$. Then $\operatorname{diam}\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=2$.

Proof. Since $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{2}(+) M\right)\right) \geq 2$, so by Lemma 2.5 it must be that diam $\left(\Gamma\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)>1$. Suppose that $\left(\left(x_{1}, y_{1}\right), m_{1}\right)$ and $\left(\left(x_{2}, y_{2}\right), m_{2}\right)$ are belong to $Z\left(\left(R_{1} \times\right.\right.$ $\left.\left.R_{2}\right)(+) M\right)^{*}$. Consider $\quad \mathrm{x} \in Z\left(R_{1}\right)^{*}$. Since $\operatorname{diam}\left(\Gamma\left(R_{1}(+) M\right)\right)=1$, so by Lemma 2.2, it must be that $\mathrm{x} x_{1}=x x_{2}=0 \quad$ and $\quad \mathrm{x} m_{1}=x m_{2}=0$. Therefore $\left(\left(x_{1}, y_{1}\right), m_{1}\right)-((x, 0), 0)-\left(\left(x_{2}, y_{2}\right), m_{2}\right)$ is a path of length 2 in $\Gamma\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)$ and hence $\operatorname{diam}\left(\Gamma\left(\left(R_{1} \times R_{2}\right)(+)\right.\right.$ $\mathrm{M})=2$.

Theorem 2.7.

Let R_{1} and R_{2} be commutative rings, M be a prime module over $\quad R_{1}$ and R_{2}. Let $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{1}(+) M\right)\right)=$ $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{2}(+) M\right)\right)=2$. Then $\operatorname{diam}\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=2$.

Proof. By Lemma 2.5, diam $\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)>1$.
Suppose that $\left(\left(x_{1}, y_{1}\right), m_{1}\right)$ and $\left(\left(x_{2}, y_{2}\right), m_{2}\right)$ are belong to $Z\left(\left(R_{1} \times R_{2}\right)(+) M\right)^{*}$.Since, $\operatorname{diam}\left(\Gamma\left(R_{1}(+) M\right)\right)=2$ and $\operatorname{diam}\left(\Gamma\left(R_{2}(+) M\right)\right)=2$. Thus by Lemma 2.3, one of the following cases hold.

Case 1: Let there is a non zero elements z_{1} of $\left(0:{ }_{\mathrm{R}_{1}} \mathrm{M}\right)$ or z_{2} of $\left(0:{ }_{\mathrm{R}_{2}} \mathrm{M}\right)$ such that $x_{1} z_{1}=x_{2} z_{1}=0$ or $y_{1} z_{2}=$ $y_{2} z_{2}=0$. So $\quad\left(x_{1}, y_{1}\right)\left(z_{1}, 0\right)=\left(x_{2}, y_{2}\right)\left(z_{1}, 0\right)=(0,0) \quad$ or $\left(x_{1}, y_{1}\right)\left(0, z_{2}\right)=\left(x_{2}, y_{2}\right)\left(0, z_{2}\right)=(0,0)$. Therefore by Lemma 2.3, diam $\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=2$, since $\left(z_{1}, 0\right)$ and $\left(0, z_{2}\right)$ are belong to ($0:_{R_{1} \times R_{2}} \mathrm{M}$).

Case2: Let there are non zero elements m_{1} and m_{2} of M such that $x_{1} m_{1}=x_{2} m_{1}=0$ and $y_{1} m_{2}=y_{2} m_{2}=0$. Since M is prime, so for all m of M we have $x_{1} m=x_{2} m=0$ and $y_{1} m=y_{2} m=0$. Hence, for all m of M , $\left(x_{1}, y_{1}\right) m=\left(x_{2}, y_{2}\right) m=(0,0)$ and thus by Lemma 2.3, diam $\left(\Gamma\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=2$.

Theorem 2.8.

Let R_{1} and R_{2} be commutative rings, M be a prime module over R_{1} and R_{2}. Let $\operatorname{diam}\left(\Gamma\left(R_{1}(+) M\right)\right)=2$ and $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{2}(+) M\right)\right)=3$. Then $\operatorname{diam}\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=2$ or 3.

Proof. Since $\operatorname{diam}\left(\Gamma\left(R_{1}(+) M\right)\right)=2$, so by Lemma 2.5 , we have $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)>1$. Consider $\left(\left(x_{1}, y_{1}\right), m_{1}\right)$ and $\left(\left(x_{2}, y_{2}\right), m_{2}\right)$ are belong to $Z\left(\left(R_{1} \times R_{2}\right)(+) M\right)^{*}$. Since $\operatorname{diam}\left(\Gamma\left(R_{1}(+) M\right)\right)=2$, so by Lemma 2.3, one of the following cases hold.

Case 1: There exists non zero element z_{1} of ($0: \mathrm{R}_{1} \mathrm{M}$) such that $x_{1} z_{1}=x_{2} z_{1}=0$, for all $x_{1}, x_{2} \in \mathrm{Z}\left(R_{1}\right) \cup\left(0:_{R_{1}} \mathrm{M}\right)$. Then $\left(x_{1}, y_{1}\right)\left(z_{1}, 0\right)=\left(x_{2}, y_{2}\right)\left(z_{1}, 0\right)=(0,0)$. Therefore by Lemma 2.3, $\operatorname{diam}\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=2$.

Case 2: Let there are non zero element m_{1} of M such that $x_{1} m_{1}=x_{2} m_{1}=0$, for all $x_{1}, x_{2} \in \mathrm{Z}\left(R_{1}\right) \cup\left(0:_{R_{1}} \mathrm{M}\right)$. Since M is prime, so for all m of M we have $x_{1} m=x_{2} m=$ 0 . Assume that $\operatorname{diam}\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=2$. Then there must exists $((\mathrm{a}, \mathrm{b}), \mathrm{m}) \in Z\left(\left(R_{1} \times R_{2}\right)(+) M\right)^{*}$ such that

$$
\left(\left(x_{1}, y_{1}\right), m_{1}\right) \quad((\mathrm{a}, \mathrm{~b}), \mathrm{m})=\quad\left(\left(x_{2}, y_{2}\right), m_{2}\right)
$$ $((\mathrm{a}, \mathrm{b}), \mathrm{m})=((0,0), 0)$. Thus $x_{1} a=x_{2} a=0$ and $y_{1} b=y_{2} b=$ 0 ; hence $\mathrm{a}=0$, since Case 1 is not hold and $\mathrm{b}=0$ since $\operatorname{diam}\left(\Gamma\left(R_{2}(+) M\right)\right)=3$. Also, $x_{1} m_{1}+y_{1} m_{1}=0$ and $x_{2} m_{2}+$ $y_{2} m_{2}=0$ implies that $y_{1} m_{1}=y_{2} m_{2}=0$, since $x_{1} m_{1}=$ $x_{2} m_{1}=0$. So for all m of M we have $y_{1} m_{1}=y_{2} m_{2}=$ 0 , since M is prime. Hence by Lemma 2.3, $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{2}(+) M\right)\right)=2$, which is a contradiction. Thus diam $\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=3$. Therefore in any cases $\operatorname{diam}\left(\left(\left(R_{1} \times R_{2}\right)\right.\right.$ $(+) \mathrm{M})=2$ or 3 .

Theorem 2.9.
Let R_{1} and R_{2} be commutative rings, M be a prime module over $\quad R_{1} \quad$ and $\quad R_{2}$. Let $\operatorname{diam}\left(\Gamma\left(R_{1}(+) M\right)\right)=$ $\operatorname{diam}\left(\Gamma\left(R_{2}(+) M\right)\right)=3$. Then $\operatorname{diam}\left(\Gamma\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=3$ if and only if for $\mathrm{m} \in M$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathrm{Z}\left(R_{1} \times\right.$ $\left.R_{2}\right) \cup\left(0:_{R_{1} \times R_{2}} \mathrm{M}\right)$, then $\left(x_{1}, y_{1}\right) m=\left(x_{2}, y_{2}\right) m=0$ implies that $\mathrm{m}=0$.

Proof. Assume that diam $\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=3$. If there is a m of M^{*} such that $\left(x_{1}, y_{1}\right) m=\left(x_{2}, y_{2}\right) m=0$, for $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right) \in Z\left(R_{1} \times R_{2}\right) \cup\left(0:_{R_{1} \times R_{2}} M\right)$, then by Lemma 2.3, $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=2$, which is a contradiction. Conversely, assume that $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=2$, then by Lemma 2.3, there is $0 \neq\left(z_{1}, z_{2}\right) \in\left(0:_{R_{1} \times R_{2}} M\right)$ such that $\left(x_{1}, y_{1}\right)\left(z_{1}, z_{2}\right)=\left(x_{2}, y_{2}\right)\left(z_{1}, z_{2}\right)=(0,0)$, for all $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right) \in \mathrm{Z}\left(R_{1} \times R_{2}\right) \cup\left(0:_{R_{1} \times R_{2}} \mathrm{M}\right)$. Hence $x_{1} z_{1}=x_{2} z_{1}=$ 0 and $y_{1} z_{2}=y_{2} z_{2}=0$, then by Lemma 2.3, $\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{1}(+) M\right)\right)=\operatorname{diam}\left(\boldsymbol{\Gamma}\left(R_{2}(+) M\right)\right)=2$, which is a contradiction. So diam $\left(\left(\left(R_{1} \times R_{2}\right)(+) \mathrm{M}\right)\right)=3$.

10. Conclusions

In this paper a review of the zero divisor graph of idealization is presented. We completely characterized the diameter of the graph $\boldsymbol{\Gamma}\left(\left(\mathrm{R} _1 \times \mathrm{R} _2\right)(+) \mathrm{M}\right)$. We studied when this graph is a complete graph and has diameter 2 or 3 .

References

[1] D.F. Anderson, A. Frazier, A. Lauve, P. Livingstone, The zero divisor graph of a commutative ring, II. Lecture Notes in Pure and Applied Mathematics 220 (2001) 61-27.
[2] D.F. Anderson, P.S. Livingston, The zero divisor graph of a commutative ring. J. Algebra 217 (1999) 434-447.
[3] D.F. Anderson, S.B. Mulay, On the diameter and girth of a zero divisor graph. Journal of Pure and Applied algebra, 210 (2007) 543-550.
[4] M. Axtell and J. Stickles, Zero divisor graph of idealization. Journal of Pure and Applied Algebra 204 (2006) 235-243.
[5] I. Beck, Coloring of a commutative ring. J. Algebra 116 (1988) 208-226.
[6] S. Ebrahimi Atani and F. Farzalipour, Zero divisor graphs of idealizations with respect to modules. Chiang Mai. J. Sci. 36 (2009) 5-8.
[7] S.Ebrahimi Atani and M. Shajari Kohan, The diameter of a zero divisor graph for a finite direct product of commutative rings. Sarajevo journal of mathematics 16 (2007) 149-156.
[8] J. Huckaba, Commutative ring with zero divisors, in: Monographs Pure Applied Mathematics, Marcel Dekker, Basel, New York, 1988.
[9] S.P. Redmond, An ideal based zero divisor graph of a commutative ring. Comm. Algebra 31 (2003) 4425-4443.
[10] J. Warfel, Zero divisor graphs for direct product of commutative ring, Huston J. Mathematics, 2004.

[^0]: * Corresponding Author:

 E-mail address: meh.azadi@iauctb.ac.ir

